Problem 1.23

A man stands atop a mountain whose altitude is given by $z=e^{-\left(x^{4}+4 y^{2}\right)}$ and pours boiling oil upon the climbers below him. What paths do the rivulets of oil follow? [Assume that these paths are orthogonal to the contour lines (level curves) of the mountain.]

Solution

We can see what this mountain looks like by plotting z as a function of x and y.

Figure 1: Plot of $z(x, y)$ for $-3<x<3$ and $-1<y<1$ and $0<z<1$.
A level curve of the mountain is a set of points that all have the same height on the mountain. Since the height is represented by z, the general expression for the level curves is obtained by setting z equal to a constant C.

$$
e^{-\left(x^{4}+4 y^{2}\right)}=C
$$

This equation tells us the set of points on the mountain at every possible height in the $x y$-plane. Since the paths the rivulets of oil follow are orthogonal to the contour lines, we will have to solve this equation for the orthogonal trajectories.

$$
\begin{aligned}
\ln e^{-\left(x^{4}+4 y^{2}\right)} & =\ln C \\
-\left(x^{4}+4 y^{2}\right) & =\ln C \\
x^{4}+4 y^{2} & =A
\end{aligned}
$$

Now differentiate both sides with respect to x.

$$
\begin{aligned}
4 x^{3}+8 y y^{\prime} & =0 \\
x^{3}+2 y y^{\prime} & =0 \\
2 y y^{\prime} & =-x^{3} \\
y^{\prime} & =-\frac{x^{3}}{2 y}
\end{aligned}
$$

The orthogonal trajectories have slopes given by the negative reciprocal.

$$
y_{T}^{\prime}=\frac{2 y_{T}}{x^{3}}
$$

Solve for y_{T} by separation of variables.

$$
\frac{d y_{T}}{y_{T}}=2 x^{-3} d x
$$

Integrate both sides.

$$
\begin{aligned}
\ln \left|y_{T}\right| & =-x^{-2}+C_{1} \\
\left|y_{T}\right| & =e^{-x^{-2}+C_{1}} \\
y_{T} & = \pm e^{C_{1}} e^{-x^{-2}}
\end{aligned}
$$

Therefore, the orthogonal trajectories are represented by the following family of curves. The rivulets of oil follow these trajectories.

$$
y_{T}(x)=B e^{-\frac{1}{x^{2}}}
$$

Figure 2: Plot of some of the level curves of z in blue $(A=\{1,4,9,16\})$ and some of the paths the rivulets of oil follow in red ($B=\{0, \pm 1, \pm 3, \pm 10$).

